Note: all statements require proofs. You can make references to standard theorems from the course; however, you need state the relevant part of the theorem in your own words, unless it is a well-known named theorem. For example, "we had a theorem in the class that said that any continuous function on a compact subset of \mathbb{R}^{n} is uniformly continuous" is a good reference, and "by the uniqueness theorem from the class, f is unique" is not a good reference.

1. Let $z_{1}, \ldots, z_{n} \in \mathbb{C}$ be distinct points and suppose f is injective and holomorphic on $\mathbb{C} \backslash\left\{z_{1}, \ldots, z_{n}\right\}$. Show that $f(z)=\frac{a z+b}{c z+d}$ for some $a, b, c, d \in \mathbb{C}$.
2. Compute the following integral

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

3. Determine the number of zeros the polynomial $p(z)=z^{7}+16 z^{2}+1$ has in the open annulus $\{z \in$ $\left.\mathbb{C}: \frac{1}{2}<|z|<2\right\}$.
4. Suppose f is a conformal map (i.e. a bijective holomorphic function) from the punctured disc $\mathbb{D} \backslash\{0\}$ to itself. Show that $f(z)=e^{i \theta} z$ for some $\theta \in \mathbb{R}$.
5. Let f be an entire function such that for each $n \in \mathbb{N}$

$$
\frac{1}{2} e^{2^{(1.5 n)}} \leq \max _{|z|=2^{n}}|f(z)| \leq e^{2^{(1.5 n)}}
$$

Show that f has infinitely many zeros.

